Solver implementation
This document describes how the solver_main
is implemented and how to add custom solvers.
some setup
using Unfold, UnfoldSim, CairoMakie
using LinearAlgebra: cholesky
Solver main
This function gis a eneral purpose solver-wrapper function. It calls prepare_fun
and iterates over the first dimension of data
, repeatedly calling the solver_fun
.
Without any bells and whistles (progress, history etc.) the function roughly looks like this:
function _solver_min(X, data; prepare_fun, solver_fun!, stderror = false)
Ĥ, dataP, prepared = prepare_fun(X, data)
for ch = 1:size(dataP, 2)
for t = 1:size(dataP, 3)
ch == 1 || copyto!(view(Ĥ, ch, :, t), view(Ĥ, ch - 1, :, t))
solver_fun!(view(Ĥ, ch, :, t), view(dataP, :, ch, t), prepared...)
end
end
modelfit = stderror ? calculate_stderror(X, data, Ĥ) : nothing
return modelfit
end
_solver_min (generic function with 1 method)
Before diving into the prepare_fun
and solver_fun!
functions, let's discuss first the inner loop t=1:size(dataP,3)
. This loop really only comes alife (that is size(dataP,3)!=1
) if a mass-univariate model is fitted, that is, when ndims(data)==3`. We still have it around for 2D, un-epoched data, to have exactly the same code in both cases.
prepare_fun
`
This function is the setup / prepare function. It is typically a chain of functions with similar input / output characteristica. The first fuction of the chain/pipeline should be a function taking (X,data)
and returning (Ĥ::AbstractArray, dataP::AbstractArray, prepared::Tuple)
.
Ĥ
is used to save the beta/parameters inplacedataP
is the data in format ch x repeat x time (with size(time) = 1 if data initially was a Matrix/2D-array)prepared
is a tuple of all the other variables needed in the solver-step, e.g. thepinv(X)
orX'X
or simplyX
The prepare
function which is typiclly the first, just permutes the data & converts everything to GPU in case data::CuArray
.
The next function in a pipeline then would take this (Ĥ::AbstractArray, dataP::AbstractArray, prepared::Tuple)
inputs and process it further.`
solver_fun!
This function actually performs the fitting. It takes the inputs (Ĥ::view(Matrix),data::view(Array),prepared::Tuple)
Ĥ
is the current beta/parameters view, a vector/slice for one channel and one timepointdata
is similarly the current data view, a vector/slice for one channel and one timepointprepared
is the tuple-output of theprepare
function.
The solver_fun!
can output some history of the solver, e.g. a log for iterative solvers.
Example (simple)
let's setup our own solver:
_my_solver!(Ĥ, data, X) = Ĥ .= Matrix(X) \ data
_my_solver! (generic function with 1 method)
let's simulate some data and see this in action
data, evts = UnfoldSim.predef_eeg()
m = fit(
UnfoldModel,
@formula(0 ~ 1 + condition),
evts,
data,
firbasis((-0.1, 0.5), 100);
solver = (x, y) ->
Unfold.solver_main(x, y; solver_fun! = _my_solver!, show_time = true),
)
Unfold[38;2;239;83;80m-[39mType: [38;2;206;147;216m::UnfoldLinearModelContinuousTime[39m{{Float64}}
[1m Any[22m [38;2;239;83;80m=[39m[38;2;239;83;80m>[39m [38;2;239;83;80mAny[39m: timeexpand([38;2;144;202;249m1[39m [38;2;239;83;80m+[39m condition) for times [38;2;239;83;80m[[39m[38;2;239;83;80m-[39m[38;2;144;202;249m0.1[39m, [38;2;239;83;80m-[39m[38;2;144;202;249m0.09[39m ... [38;2;144;202;249m0.5[39m[38;2;239;83;80m][39m
[1m[32m✔[22m[39m model is fit. size(coefs) ([38;2;144;202;249m1[39m, [38;2;144;202;249m122[39m)
Useful functions: [38;2;255;238;88m`design(uf)`[39m, [38;2;255;238;88m`designmatrix(uf)`[39m, [38;2;255;238;88m`coef(uf)`[39m, [38;2;255;238;88m`coeftable(uf)`[39mRemember from this table the time for one solve (~700ms on my test-computer) this is the time per channel.
series(coef(m))

Cholesky Example
the following function is already implemented in Unfold.jl as well. See ?Unfold.solver_predefined
Given that the prepare
function returns all necessary ingredients, this is a bit simple. So let's make it more complex
for nicety, we need some unpacking wrappers
_prepare_cholesky(all::Tuple) = _prepare_cholesky(all...)
_prepare_cholesky(Ĥ, data, all::Tuple) = _prepare_cholesky(Ĥ, data, all...)
_prepare_cholesky (generic function with 2 methods)
this function effectively only pre-calculates the cholesky decomposition
_prepare_cholesky(Ĥ, data, Xt, R_xx, R_xy) = (Ĥ, data, (Xt, cholesky(R_xx), R_xy))
_prepare_cholesky (generic function with 3 methods)
now we have everything to put together our solver-pipeline
_my_prepare =
(x, y) -> Unfold.prepare(collect(x), y) |> Unfold.prepare_XTX |> _prepare_cholesky
#4 (generic function with 1 method)
let's test (note we have to reshape the data)
@time _my_prepare(modelmatrix(m), reshape(data, 1, :))
([0.0 0.0 … 0.0 0.0], [0.31631798033146774; 0.40338935529989906; … ; -0.22230944464885682; -0.01320095208877194;;], ([0.0 0.0 … 0.0 0.0; 0.0 0.0 … 0.0 0.0; … ; 0.0 0.0 … 0.0 0.0; 0.0 0.0 … 0.0 0.0], LinearAlgebra.Cholesky{Float64, Matrix{Float64}}([44.721359549995796 0.0 … 1.3416407864998738 1.050951949424901; 0.0 44.721359549995796 … 0.872066511224918 1.3416407864998738; … ; 60.0 39.0 … 22.350948931592846 0.0017222814568252079; 47.0 60.0 … 0.0 22.35013390954843], 'U', 0), [5.0e-324, 0.0, 5.0e-324, 1.5e-323, 5.0e-324, 5.0e-324, 2.0e-323, 1.5e-323, 6.93362778451894e-310, 2.5e-323 … 1.73e-322, 6.93362778444305e-310, 2.0e-322, 1.8e-322, 6.9334739410459e-310, 2.08e-322, 1.83e-322, 6.93347394114704e-310, 2.03e-322, 1.83e-322]))
finally, we need a solver this is how we solve the single-channel equation
function _my_cholesky!(beta, data, Xt, XtX_cholesky, R_xy)
@time Unfold.calc_Rxy!(R_xy, Xt, data)
@time beta .= XtX_cholesky \ R_xy
end
m = fit(
UnfoldModel,
@formula(0 ~ 1 + condition),
evts,
data,
firbasis((-0.1, 0.5), 100);
solver = (x, y) -> Unfold.solver_main(
x,
y;
prepare_fun = _my_prepare,
solver_fun! = _my_cholesky!,
show_time = true,
),
)
Unfold[38;2;239;83;80m-[39mType: [38;2;206;147;216m::UnfoldLinearModelContinuousTime[39m{{Float64}}
[1m Any[22m [38;2;239;83;80m=[39m[38;2;239;83;80m>[39m [38;2;239;83;80mAny[39m: timeexpand([38;2;144;202;249m1[39m [38;2;239;83;80m+[39m condition) for times [38;2;239;83;80m[[39m[38;2;239;83;80m-[39m[38;2;144;202;249m0.1[39m, [38;2;239;83;80m-[39m[38;2;144;202;249m0.09[39m ... [38;2;144;202;249m0.5[39m[38;2;239;83;80m][39m
[1m[32m✔[22m[39m model is fit. size(coefs) ([38;2;144;202;249m1[39m, [38;2;144;202;249m122[39m)
Useful functions: [38;2;255;238;88m`design(uf)`[39m, [38;2;255;238;88m`designmatrix(uf)`[39m, [38;2;255;238;88m`coef(uf)`[39m, [38;2;255;238;88m`coeftable(uf)`[39mThis (on my test-computer) took only 97ms per channel, so it is ~7x faster per channel.
series(coef(m))

This page was generated using Literate.jl.