Speed measurement
Here we will compare the speed of plotting UnfoldMakie with MNE (Python) and EEGLAB (MATLAB).
Three cases are measured:
- Single topoplot
- Topoplot series with 50 topoplots
- Topoplott animation with 50 timestamps
Note that the results of benchmarking on your computer and on Github may differ.
using UnfoldMakie
using TopoPlots
using BenchmarkTools
using Observables
using CairoMakie
using PythonPlot;
using PyMNE;
CondaPkg Found dependencies: /home/runner/.julia/packages/PyMNE/HGgbW/CondaPkg.toml
CondaPkg Found dependencies: /home/runner/.julia/packages/PythonCall/WMWY0/CondaPkg.toml
CondaPkg Found dependencies: /home/runner/.julia/packages/PythonPlot/oS8x4/CondaPkg.toml
CondaPkg Initialising pixi
│ /home/runner/.julia/artifacts/cefba4912c2b400756d043a2563ef77a0088866b/bin/pixi
│ init
│ --format pixi
└ /home/runner/work/UnfoldMakie.jl/UnfoldMakie.jl/docs/.CondaPkg
✔ Created /home/runner/work/UnfoldMakie.jl/UnfoldMakie.jl/docs/.CondaPkg/pixi.toml
CondaPkg Wrote /home/runner/work/UnfoldMakie.jl/UnfoldMakie.jl/docs/.CondaPkg/pixi.toml
│ [dependencies]
│ openssl = ">=3, <3.6"
│ uv = ">=0.4"
│ libstdcxx-ng = ">=3.4,<13.0"
│ matplotlib = ">=1"
│
│ [dependencies.python]
│ channel = "conda-forge"
│ build = "*cpython*"
│ version = ">=3.8,<4, >=3.4,<4"
│
│ [project]
│ name = ".CondaPkg"
│ platforms = ["linux-64"]
│ channels = ["conda-forge", "anaconda"]
│ channel-priority = "strict"
│ description = "automatically generated by CondaPkg.jl"
│
│ [pypi-dependencies]
└ mne = ">=1.4"
CondaPkg Installing packages
│ /home/runner/.julia/artifacts/cefba4912c2b400756d043a2563ef77a0088866b/bin/pixi
│ install
└ --manifest-path /home/runner/work/UnfoldMakie.jl/UnfoldMakie.jl/docs/.CondaPkg/pixi.toml
✔ The default environment has been installed.
Data input
dat, positions = TopoPlots.example_data()
df = UnfoldMakie.eeg_array_to_dataframe(dat[:, :, 1], string.(1:length(positions)));
Topoplots
UnfoldMakie.jl
@benchmark plot_topoplot(dat[:, 320, 1]; positions = positions)
BenchmarkTools.Trial: 134 samples with 1 evaluation per sample.
Range (min … max): 32.627 ms … 150.877 ms ┊ GC (min … max): 0.00% … 58.64%
Time (median): 33.611 ms ┊ GC (median): 0.00%
Time (mean ± σ): 37.460 ms ± 18.201 ms ┊ GC (mean ± σ): 6.33% ± 9.68%
█ ▂
█▇█▇▇▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▄▁▁▁▁▁▄▄ ▄
32.6 ms Histogram: log(frequency) by time 142 ms <
Memory estimate: 9.10 MiB, allocs estimate: 138086.
UnfoldMakie.jl with DelaunayMesh
@benchmark plot_topoplot(
dat[:, 320, 1];
positions = positions,
topo_interpolation = (; interpolation = DelaunayMesh()),
)
BenchmarkTools.Trial: 135 samples with 1 evaluation per sample.
Range (min … max): 33.111 ms … 158.518 ms ┊ GC (min … max): 0.00% … 57.94%
Time (median): 33.836 ms ┊ GC (median): 0.00%
Time (mean ± σ): 37.142 ms ± 17.330 ms ┊ GC (mean ± σ): 5.08% ± 8.37%
█▄▁
███▁▁▁▁▁▁▁▁▁▁▄▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▄▁▁▁▁▁▁▁▄ ▄
33.1 ms Histogram: log(frequency) by time 154 ms <
Memory estimate: 9.10 MiB, allocs estimate: 138091.
MNE
posmat = collect(reduce(hcat, [[p[1], p[2]] for p in positions])')
pypos = Py(posmat).to_numpy()
pydat = Py(dat[:, 320, 1])
@benchmark begin
f = PythonPlot.figure()
PyMNE.viz.plot_topomap(
pydat,
pypos,
sphere = 1.1,
extrapolate = "box",
cmap = "RdBu_r",
sensors = false,
contours = 6,
)
f.show()
end
BenchmarkTools.Trial: 315 samples with 1 evaluation per sample.
Range (min … max): 11.732 ms … 597.077 ms ┊ GC (min … max): 0.00% … 0.00%
Time (median): 12.191 ms ┊ GC (median): 0.00%
Time (mean ± σ): 15.886 ms ± 43.953 ms ┊ GC (mean ± σ): 0.00% ± 0.00%
▄█ ▁
▄███▇▆██▄▄▃▃▃▃▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▂▁▁▁▂▁▁▁▁▁▁▂▁▂▁▁▁▁▁▁▁▁▁▁▂ ▃
11.7 ms Histogram: frequency by time 18.8 ms <
Memory estimate: 4.12 KiB, allocs estimate: 124.
Topoplot series
Note that UnfoldMakie and MNE have different defaults for displaying topoplot series. UnfoldMakie in plot_topoplot
averages over time samples. MNE in plot_topopmap
displays single samples without averaging.
UnfoldMakie.jl
@benchmark begin
plot_topoplotseries(
df;
bin_num = 50,
positions = positions,
axis = (; xlabel = "Time windows [s]"),
)
end
BenchmarkTools.Trial: 3 samples with 1 evaluation per sample.
Range (min … max): 1.913 s … 1.978 s ┊ GC (min … max): 3.24% … 4.93%
Time (median): 1.943 s ┊ GC (median): 5.02%
Time (mean ± σ): 1.945 s ± 32.141 ms ┊ GC (mean ± σ): 4.50% ± 1.10%
█ █ █
█▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁█▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁█ ▁
1.91 s Histogram: frequency by time 1.98 s <
Memory estimate: 399.95 MiB, allocs estimate: 5785067.
MNE
easycap_montage = PyMNE.channels.make_standard_montage("standard_1020")
ch_names = pyconvert(Vector{String}, easycap_montage.ch_names)[1:64]
info = PyMNE.create_info(PyList(ch_names), ch_types = "eeg", sfreq = 1)
info.set_montage(easycap_montage)
simulated_epochs = PyMNE.EvokedArray(Py(dat[:, :, 1]), info)
@benchmark simulated_epochs.plot_topomap(1:50)
BenchmarkTools.Trial: 6 samples with 1 evaluation per sample.
Range (min … max): 697.571 ms … 1.933 s ┊ GC (min … max): 0.00% … 0.00%
Time (median): 704.454 ms ┊ GC (median): 0.00%
Time (mean ± σ): 908.419 ms ± 501.919 ms ┊ GC (mean ± σ): 0.00% ± 0.00%
█
█▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▅ ▁
698 ms Histogram: frequency by time 1.93 s <
Memory estimate: 3.06 KiB, allocs estimate: 98.
MATLAB
Running MATLAB on a GitHub Action is not easy. So we benchmarked three consecutive executions (on a screenshot) on a server with an AMD EPYC 7452 32-core processor. Note that Github and the server we used for MATLAB benchmarking are two different computers, which can give different timing results.

Animation
The main advantage of Julia is the speed with which the figures are updated.
timestamps = range(1, 50, step = 1)
framerate = 50
50
UnfoldMakie with .gif
@benchmark begin
f = Makie.Figure()
dat_obs = Observable(dat[:, 1, 1])
plot_topoplot!(f[1, 1], dat_obs, positions = positions)
record(f, "topoplot_animation_UM.gif", timestamps; framerate = framerate) do t
dat_obs[] = @view(dat[:, t, 1])
end
end
BenchmarkTools.Trial: 2 samples with 1 evaluation per sample.
Range (min … max): 3.926 s … 3.991 s ┊ GC (min … max): 1.28% … 0.47%
Time (median): 3.959 s ┊ GC (median): 0.87%
Time (mean ± σ): 3.959 s ± 45.554 ms ┊ GC (mean ± σ): 0.87% ± 0.58%
█ █
█▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁█ ▁
3.93 s Histogram: frequency by time 3.99 s <
Memory estimate: 680.84 MiB, allocs estimate: 961870.
MNE with .gif
@benchmark begin
fig, anim = simulated_epochs.animate_topomap(
times = Py(timestamps),
frame_rate = framerate,
blit = false,
image_interp = "cubic", # same as CloughTocher
)
anim.save("topomap_animation_mne.gif", writer = "ffmpeg", fps = framerate)
end
BenchmarkTools.Trial: 1 sample with 1 evaluation per sample.
Single result which took 9.087 s (0.00% GC) to evaluate,
with a memory estimate of 4.07 KiB, over 150 allocations.
Note, that due to some bugs in (probably) PythonCall
topoplot is black and white.
This page was generated using Literate.jl.