Speed measurement

Here we will compare the speed of plotting UnfoldMakie with MNE (Python) and EEGLAB (MATLAB).

Three cases are measured:

  • Single topoplot
  • Topoplot series with 50 topoplots
  • Topoplott animation with 50 timestamps

Note that the results of benchmarking on your computer and on Github may differ.

using UnfoldMakie
using TopoPlots
using BenchmarkTools
using Observables
using CairoMakie
using PythonPlot;
using PyMNE;
    CondaPkg Found dependencies: /home/runner/.julia/packages/CondaPkg/0UqYV/CondaPkg.toml
    CondaPkg Found dependencies: /home/runner/.julia/packages/PyMNE/cNGDN/CondaPkg.toml
    CondaPkg Found dependencies: /home/runner/.julia/packages/PythonCall/83z4q/CondaPkg.toml
    CondaPkg Found dependencies: /home/runner/.julia/packages/PythonPlot/oS8x4/CondaPkg.toml
    CondaPkg Dependencies already up to date

Data input

dat, positions = TopoPlots.example_data()
df = UnfoldMakie.eeg_array_to_dataframe(dat[:, :, 1], string.(1:length(positions)));

Topoplots

UnfoldMakie.jl

@benchmark plot_topoplot(dat[:, 320, 1]; positions = positions)
BenchmarkTools.Trial: 102 samples with 1 evaluation per sample.
 Range (minmax):  42.301 ms342.773 ms   GC (min … max): 0.00% … 85.41%
 Time  (median):     46.291 ms                GC (median):    0.00%
 Time  (mean ± σ):   49.134 ms ±  29.428 ms   GC (mean ± σ):  5.84% ±  8.46%

          ▁▁  ▁       ▃█  ▁▁▁ ▁▃▁ █     ▁  █▁                   
  ▄▄▇▁▄▄▇▄██▇▄█▄▇▄▄▁▇▄██▄▄██████▄█▇▄▄▇▇█▇▁██▇▄▄▄▁▁▁▄▇▁▁▁▁▁▁▄ ▄
  42.3 ms         Histogram: frequency by time         51.1 ms <

 Memory estimate: 11.59 MiB, allocs estimate: 190700.

UnfoldMakie.jl with DelaunayMesh

@benchmark plot_topoplot(
    dat[:, 320, 1];
    positions = positions,
    topo_interpolation = (; interpolation = DelaunayMesh()),
)
BenchmarkTools.Trial: 95 samples with 1 evaluation per sample.
 Range (minmax):  46.440 ms347.054 ms   GC (min … max): 0.00% … 84.84%
 Time  (median):     49.343 ms                GC (median):    0.00%
 Time  (mean ± σ):   52.784 ms ±  30.572 ms   GC (mean ± σ):  5.87% ±  8.70%

  ▁    ▁  ▃   ▃▁█ ▃▁▆▃▁ █ ▁  ▁                                 
  █▄▁▄▁█▄▄█▇▇▁███▇█████▄█▇█▁▄█▇▄▄▄▇▇▇▄▇▄▁▁▄▁▁▁▄▁▁▁▄▄▁▁▁▁▄▁▁▇ ▁
  46.4 ms         Histogram: frequency by time         55.3 ms <

 Memory estimate: 11.59 MiB, allocs estimate: 190707.

MNE

posmat = collect(reduce(hcat, [[p[1], p[2]] for p in positions])')
pypos = Py(posmat).to_numpy()
pydat = Py(dat[:, 320, 1])

@benchmark begin
    f = PythonPlot.figure()
    PyMNE.viz.plot_topomap(
        pydat,
        pypos,
        sphere = 1.1,
        extrapolate = "box",
        cmap = "RdBu_r",
        sensors = false,
        contours = 6,
    )
    f.show()
end
BenchmarkTools.Trial: 387 samples with 1 evaluation per sample.
 Range (minmax):  11.941 ms182.226 ms   GC (min … max): 0.00% … 0.00%
 Time  (median):     12.265 ms                GC (median):    0.00%
 Time  (mean ± σ):   12.912 ms ±   8.784 ms   GC (mean ± σ):  0.00% ± 0.00%

    ▂█▇▆▅                                        
  ▄▇███████▆▇█▆▆▅▅▆▅▄▃▄▃▃▃▂▁▂▃▁▂▁▁▁▂▂▁▂▁▁▁▃▁▁▁▂▁▂▁▁▁▁▁▁▁▁▁▁▂ ▃
  11.9 ms         Histogram: frequency by time         14.5 ms <

 Memory estimate: 3.30 KiB, allocs estimate: 98.

Topoplot series

Note that UnfoldMakie and MNE have different defaults for displaying topoplot series. UnfoldMakie in plot_topoplot averages over time samples. MNE in plot_topopmap displays single samples without averaging.

UnfoldMakie.jl

@benchmark begin
    plot_topoplotseries(
        df;
        bin_num = 50,
        positions = positions,
        axis = (; xlabel = "Time windows [s]"),
    )
end
BenchmarkTools.Trial: 3 samples with 1 evaluation per sample.
 Range (minmax):  2.028 s  2.186 s   GC (min … max): 0.00% … 0.00%
 Time  (median):     2.132 s               GC (median):    0.00%
 Time  (mean ± σ):   2.115 s ± 80.591 ms   GC (mean ± σ):  0.00% ± 0.00%

                                      █                  █  
  ▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁█▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁█ ▁
  2.03 s         Histogram: frequency by time        2.19 s <

 Memory estimate: 342.81 MiB, allocs estimate: 4928119.

MNE

easycap_montage = PyMNE.channels.make_standard_montage("standard_1020")
ch_names = pyconvert(Vector{String}, easycap_montage.ch_names)[1:64]
info = PyMNE.create_info(PyList(ch_names), ch_types = "eeg", sfreq = 1)
info.set_montage(easycap_montage)
simulated_epochs = PyMNE.EvokedArray(Py(dat[:, :, 1]), info)

@benchmark simulated_epochs.plot_topomap(1:50)
BenchmarkTools.Trial: 8 samples with 1 evaluation per sample.
 Range (minmax):  686.545 ms717.607 ms   GC (min … max): 0.00% … 0.00%
 Time  (median):     692.219 ms                GC (median):    0.00%
 Time  (mean ± σ):   696.033 ms ±   9.843 ms   GC (mean ± σ):  0.00% ± 0.00%

  █     ██ █     █   █                                █  
  █▁▁▁▁▁██▁█▁█▁▁▁▁▁▁▁▁▁█▁▁▁█▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁█ ▁
  687 ms           Histogram: frequency by time          718 ms <

 Memory estimate: 2.39 KiB, allocs estimate: 69.

MATLAB

Running MATLAB on a GitHub Action is not easy. So we benchmarked three consecutive executions (on a screenshot) on a server with an AMD EPYC 7452 32-core processor. Note that Github and the server we used for MATLAB benchmarking are two different computers, which can give different timing results.

Animation

The main advantage of Julia is the speed with which the figures are updated.

timestamps = range(1, 50, step = 1)
framerate = 50
50

UnfoldMakie with .gif

@benchmark begin
    f = Makie.Figure()
    dat_obs = Observable(dat[:, 1, 1])
    plot_topoplot!(f[1, 1], dat_obs, positions = positions)
    record(f, "topoplot_animation_UM.gif", timestamps; framerate = framerate) do t
        dat_obs[] = @view(dat[:, t, 1])
    end
end
BenchmarkTools.Trial: 2 samples with 1 evaluation per sample.
 Range (minmax):  2.818 s  2.854 s   GC (min … max): 0.00% … 0.00%
 Time  (median):     2.836 s               GC (median):    0.00%
 Time  (mean ± σ):   2.836 s ± 25.598 ms   GC (mean ± σ):  0.00% ± 0.00%

                              ▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁█ ▁
  2.82 s         Histogram: frequency by time        2.85 s <

 Memory estimate: 178.42 MiB, allocs estimate: 602397.

MNE with .gif

@benchmark begin
    fig, anim = simulated_epochs.animate_topomap(
        times = Py(timestamps),
        frame_rate = framerate,
        blit = false,
        image_interp = "cubic", # same as CloughTocher
    )
    anim.save("topomap_animation_mne.gif", writer = "ffmpeg", fps = framerate)
end
BenchmarkTools.Trial: 1 sample with 1 evaluation per sample.
 Single result which took 9.359 s (0.00% GC) to evaluate,
 with a memory estimate of 3.03 KiB, over 96 allocations.

Note, that due to some bugs in (probably) PythonCall topoplot is black and white.


This page was generated using Literate.jl.