Speed measurement

Here we will compare the speed of plotting UnfoldMakie with MNE (Python) and EEGLAB (MATLAB).

Three cases are measured:

  • Single topoplot
  • Topoplot series with 50 topoplots
  • Topoplott animation with 50 timestamps

Note that the results of benchmarking on your computer and on Github may differ.

using UnfoldMakie
using TopoPlots
using BenchmarkTools
using Observables
using CairoMakie
using PythonPlot;
using PyMNE;
    CondaPkg Found dependencies: /home/runner/.julia/packages/CondaPkg/0UqYV/CondaPkg.toml
    CondaPkg Found dependencies: /home/runner/.julia/packages/PyMNE/cNGDN/CondaPkg.toml
    CondaPkg Found dependencies: /home/runner/.julia/packages/PythonCall/mkWc2/CondaPkg.toml
    CondaPkg Found dependencies: /home/runner/.julia/packages/PythonPlot/oS8x4/CondaPkg.toml
    CondaPkg Initialising pixi
             │ /home/runner/.julia/artifacts/cefba4912c2b400756d043a2563ef77a0088866b/bin/pixi
             │ init
             │ --format pixi
             └ /home/runner/work/UnfoldMakie.jl/UnfoldMakie.jl/docs/.CondaPkg
✔ Created /home/runner/work/UnfoldMakie.jl/UnfoldMakie.jl/docs/.CondaPkg/pixi.toml
    CondaPkg Wrote /home/runner/work/UnfoldMakie.jl/UnfoldMakie.jl/docs/.CondaPkg/pixi.toml
             │ [dependencies]
             │ openssl = ">=3, <3.6"
             │ libstdcxx = ">=3.4,<15.0"
             │ uv = ">=0.4"
             │ libstdcxx-ng = ">=3.4,<15.0"
             │ matplotlib = ">=1"
             │
             │     [dependencies.python]
             │     channel = "conda-forge"
             │     build = "*cp*"
             │     version = ">=3.9,<4, >=3.4,<4"
             │
             │ [project]
             │ name = ".CondaPkg"
             │ platforms = ["linux-64"]
             │ channels = ["conda-forge", "anaconda"]
             │ channel-priority = "strict"
             │ description = "automatically generated by CondaPkg.jl"
             │
             │ [pypi-dependencies]
             └ mne = ">=1.4"
    CondaPkg Installing packages
             │ /home/runner/.julia/artifacts/cefba4912c2b400756d043a2563ef77a0088866b/bin/pixi
             │ install
             └ --manifest-path /home/runner/work/UnfoldMakie.jl/UnfoldMakie.jl/docs/.CondaPkg/pixi.toml
✔ The default environment has been installed.

Data input

dat, positions = TopoPlots.example_data()
df = UnfoldMakie.eeg_array_to_dataframe(dat[:, :, 1], string.(1:length(positions)));

Topoplots

UnfoldMakie.jl

@benchmark plot_topoplot(dat[:, 320, 1]; positions = positions)
BenchmarkTools.Trial: 163 samples with 1 evaluation per sample.
 Range (minmax):  27.204 ms179.942 ms   GC (min … max): 0.00% … 64.43%
 Time  (median):     27.626 ms                GC (median):    0.00%
 Time  (mean ± σ):   30.639 ms ±  19.588 ms   GC (mean ± σ):  6.58% ±  8.54%

                                                              
  ▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▄ ▄
  27.2 ms       Histogram: log(frequency) by time       164 ms <

 Memory estimate: 7.69 MiB, allocs estimate: 114692.

UnfoldMakie.jl with DelaunayMesh

@benchmark plot_topoplot(
    dat[:, 320, 1];
    positions = positions,
    topo_interpolation = (; interpolation = DelaunayMesh()),
)
BenchmarkTools.Trial: 163 samples with 1 evaluation per sample.
 Range (minmax):  27.123 ms193.400 ms   GC (min … max): 0.00% … 63.47%
 Time  (median):     27.680 ms                GC (median):    0.00%
 Time  (mean ± σ):   30.840 ms ±  20.348 ms   GC (mean ± σ):  6.68% ±  8.46%

                                                              
  ▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▄ ▄
  27.1 ms       Histogram: log(frequency) by time       161 ms <

 Memory estimate: 7.69 MiB, allocs estimate: 114699.

MNE

posmat = collect(reduce(hcat, [[p[1], p[2]] for p in positions])')
pypos = Py(posmat).to_numpy()
pydat = Py(dat[:, 320, 1])

@benchmark begin
    f = PythonPlot.figure()
    PyMNE.viz.plot_topomap(
        pydat,
        pypos,
        sphere = 1.1,
        extrapolate = "box",
        cmap = "RdBu_r",
        sensors = false,
        contours = 6,
    )
    f.show()
end
BenchmarkTools.Trial: 362 samples with 1 evaluation per sample.
 Range (minmax):  11.929 ms231.646 ms   GC (min … max): 0.00% … 0.00%
 Time  (median):     12.242 ms                GC (median):    0.00%
 Time  (mean ± σ):   13.828 ms ±  16.504 ms   GC (mean ± σ):  0.00% ± 0.00%

  ▄▆▇▇▄                                                        
  █████▇▆▅▄▄▁▁▄▁▁▁▄▁▁▁▁▁▄▁▄▁▁▄▁▁▄▁▁▄▁▁▄▁▁▁▁▁▁▁▁▁▁▁▁▁▁▄▁▁▁▁▁▄ ▆
  11.9 ms       Histogram: log(frequency) by time      17.7 ms <

 Memory estimate: 3.30 KiB, allocs estimate: 98.

Topoplot series

Note that UnfoldMakie and MNE have different defaults for displaying topoplot series. UnfoldMakie in plot_topoplot averages over time samples. MNE in plot_topopmap displays single samples without averaging.

UnfoldMakie.jl

@benchmark begin
    plot_topoplotseries(
        df;
        bin_num = 50,
        positions = positions,
        axis = (; xlabel = "Time windows [s]"),
    )
end
BenchmarkTools.Trial: 4 samples with 1 evaluation per sample.
 Range (minmax):  1.467 s  1.663 s   GC (min … max): 0.00% … 6.55%
 Time  (median):     1.599 s               GC (median):    3.41%
 Time  (mean ± σ):   1.582 s ± 92.914 ms   GC (mean ± σ):  4.20% ± 4.79%

  █                                                   █  █  
  █▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁█▁▁█ ▁
  1.47 s         Histogram: frequency by time        1.66 s <

 Memory estimate: 310.04 MiB, allocs estimate: 3799937.

MNE

easycap_montage = PyMNE.channels.make_standard_montage("standard_1020")
ch_names = pyconvert(Vector{String}, easycap_montage.ch_names)[1:64]
info = PyMNE.create_info(PyList(ch_names), ch_types = "eeg", sfreq = 1)
info.set_montage(easycap_montage)
simulated_epochs = PyMNE.EvokedArray(Py(dat[:, :, 1]), info)

@benchmark simulated_epochs.plot_topomap(1:50)
BenchmarkTools.Trial: 6 samples with 1 evaluation per sample.
 Range (minmax):  686.335 ms   1.170 s   GC (min … max): 0.00% … 0.00%
 Time  (median):     692.337 ms                GC (median):    0.00%
 Time  (mean ± σ):   842.900 ms ± 236.284 ms   GC (mean ± σ):  0.00% ± 0.00%

  █                    ▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▆▁▁▁▁▆ ▁
  686 ms           Histogram: frequency by time          1.17 s <

 Memory estimate: 2.39 KiB, allocs estimate: 69.

MATLAB

Running MATLAB on a GitHub Action is not easy. So we benchmarked three consecutive executions (on a screenshot) on a server with an AMD EPYC 7452 32-core processor. Note that Github and the server we used for MATLAB benchmarking are two different computers, which can give different timing results.

Animation

The main advantage of Julia is the speed with which the figures are updated.

timestamps = range(1, 50, step = 1)
framerate = 50
50

UnfoldMakie with .gif

@benchmark begin
    f = Makie.Figure()
    dat_obs = Observable(dat[:, 1, 1])
    plot_topoplot!(f[1, 1], dat_obs, positions = positions)
    record(f, "topoplot_animation_UM.gif", timestamps; framerate = framerate) do t
        dat_obs[] = @view(dat[:, t, 1])
    end
end
BenchmarkTools.Trial: 2 samples with 1 evaluation per sample.
 Range (minmax):  3.972 s  3.998 s   GC (min … max): 1.17% … 0.44%
 Time  (median):     3.985 s               GC (median):    0.80%
 Time  (mean ± σ):   3.985 s ± 18.344 ms   GC (mean ± σ):  0.80% ± 0.52%

                              ▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁█ ▁
  3.97 s         Histogram: frequency by time           4 s <

 Memory estimate: 682.09 MiB, allocs estimate: 875001.

MNE with .gif

@benchmark begin
    fig, anim = simulated_epochs.animate_topomap(
        times = Py(timestamps),
        frame_rate = framerate,
        blit = false,
        image_interp = "cubic", # same as CloughTocher
    )
    anim.save("topomap_animation_mne.gif", writer = "ffmpeg", fps = framerate)
end
BenchmarkTools.Trial: 1 sample with 1 evaluation per sample.
 Single result which took 9.919 s (0.00% GC) to evaluate,
 with a memory estimate of 3.03 KiB, over 96 allocations.

Note, that due to some bugs in (probably) PythonCall topoplot is black and white.


This page was generated using Literate.jl.