Speed measurement

Here we will compare the speed of plotting UnfoldMakie with MNE (Python) and EEGLAB (MATLAB).

Three cases are measured:

  • Single topoplot
  • Topoplot series with 50 topoplots
  • Topoplott animation with 50 timestamps

Note that the results of benchmarking on your computer and on Github may differ.

using UnfoldMakie
using TopoPlots
using PyMNE
using PythonPlot
using BenchmarkTools
using Observables
using CairoMakie

Data input

dat, positions = TopoPlots.example_data()
df = UnfoldMakie.eeg_array_to_dataframe(dat[:, :, 1], string.(1:length(positions)));

Topoplots

UnfoldMakie.jl

@benchmark plot_topoplot(dat[:, 320, 1]; positions = positions)
BenchmarkTools.Trial: 132 samples with 1 evaluation per sample.
 Range (minmax):  33.431 ms357.303 ms   GC (min … max): 0.00% … 89.47%
 Time  (median):     34.341 ms                GC (median):    0.00%
 Time  (mean ± σ):   37.870 ms ±  28.557 ms   GC (mean ± σ):  6.40% ±  7.79%

  █▂  ▃ ██▄█▄▁▄▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▆ ▄
  33.4 ms       Histogram: log(frequency) by time        79 ms <

 Memory estimate: 9.52 MiB, allocs estimate: 142193.

UnfoldMakie.jl with DelaunayMesh

@benchmark plot_topoplot(
    dat[:, 320, 1];
    positions = positions,
    topo_interpolation = (; interpolation = DelaunayMesh()),
)
BenchmarkTools.Trial: 141 samples with 1 evaluation per sample.
 Range (minmax):  33.586 ms80.842 ms   GC (min … max): 0.00% … 0.00%
 Time  (median):     34.897 ms               GC (median):    0.00%
 Time  (mean ± σ):   35.568 ms ±  4.256 ms   GC (mean ± σ):  0.00% ± 0.00%

   ▁█▁                                                        
  ▂███▆▃▂▃▆▄▃▁▄▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▂▁▁▁▁▁▁▁▁▁▁▁▁▁▂ ▂
  33.6 ms         Histogram: frequency by time        49.7 ms <

 Memory estimate: 9.52 MiB, allocs estimate: 142200.

MNE

posmat = collect(reduce(hcat, [[p[1], p[2]] for p in positions])')
pypos = Py(posmat).to_numpy()
pydat = Py(dat[:, 320, 1])

@benchmark begin
    f = PythonPlot.figure()
    PyMNE.viz.plot_topomap(
        pydat,
        pypos,
        sphere = 1.1,
        extrapolate = "box",
        cmap = "RdBu_r",
        sensors = false,
        contours = 6,
    )
    f.show()
end
BenchmarkTools.Trial: 319 samples with 1 evaluation per sample.
 Range (minmax):  11.525 ms636.404 ms   GC (min … max): 0.00% … 0.00%
 Time  (median):     11.701 ms                GC (median):    0.00%
 Time  (mean ± σ):   15.695 ms ±  46.998 ms   GC (mean ± σ):  0.00% ± 0.00%

  ▇█▄             ▁▁                                           
  ███▇▆▁▄▁▁▁▄▁▁▁▁███▇▄▁▁▄▁▅▁▁▁▁▁▁▁▁▄▁▁▁▄▁▁▁▁▁▁▁▁▁▁▄▁▄▁▁▁▁▁▁▄ ▆
  11.5 ms       Histogram: log(frequency) by time      17.6 ms <

 Memory estimate: 4.27 KiB, allocs estimate: 134.

Topoplot series

Note that UnfoldMakie and MNE have different defaults for displaying topoplot series. UnfoldMakie in plot_topoplot averages over time samples. MNE in plot_topopmap displays single samples without averaging.

UnfoldMakie.jl

@benchmark begin
    plot_topoplotseries(
        df;
        bin_num = 50,
        positions = positions,
        axis = (; xlabel = "Time windows [s]"),
    )
end
BenchmarkTools.Trial: 3 samples with 1 evaluation per sample.
 Range (minmax):  1.899 s  2.033 s   GC (min … max): 0.00% … 0.00%
 Time  (median):     1.938 s               GC (median):    0.00%
 Time  (mean ± σ):   1.957 s ± 68.774 ms   GC (mean ± σ):  0.00% ± 0.00%

   ▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁█▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁█ ▁
  1.9 s          Histogram: frequency by time        2.03 s <

 Memory estimate: 414.75 MiB, allocs estimate: 6132328.

MNE

easycap_montage = PyMNE.channels.make_standard_montage("standard_1020")
ch_names = pyconvert(Vector{String}, easycap_montage.ch_names)[1:64]
info = PyMNE.create_info(PyList(ch_names), ch_types = "eeg", sfreq = 1)
info.set_montage(easycap_montage)
simulated_epochs = PyMNE.EvokedArray(Py(dat[:, :, 1]), info)

@benchmark simulated_epochs.plot_topomap(1:50)
BenchmarkTools.Trial: 6 samples with 1 evaluation per sample.
 Range (minmax):  660.962 ms   2.040 s   GC (min … max): 0.00% … 0.00%
 Time  (median):     675.773 ms                GC (median):    0.00%
 Time  (mean ± σ):   900.020 ms ± 558.477 ms   GC (mean ± σ):  0.00% ± 0.00%

  █           ▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▅ ▁
  661 ms           Histogram: frequency by time          2.04 s <

 Memory estimate: 3.25 KiB, allocs estimate: 111.

MATLAB

Running MATLAB on a GitHub Action is not easy. So we benchmarked three consecutive executions (on a screenshot) on a server with an AMD EPYC 7452 32-core processor. Note that Github and the server we used for MATLAB benchmarking are two different computers, which can give different timing results.

Animation

The main advantage of Julia is the speed with which the figures are updated.

timestamps = range(1, 50, step = 1)
framerate = 50
50

UnfoldMakie with .gif

@benchmark begin
    f = Makie.Figure()
    dat_obs = Observable(dat[:, 1, 1])
    plot_topoplot!(f[1, 1], dat_obs, positions = positions)
    record(f, "topoplot_animation_UM.gif", timestamps; framerate = framerate) do t
        dat_obs[] = @view(dat[:, t, 1])
    end
end
BenchmarkTools.Trial: 2 samples with 1 evaluation per sample.
 Range (minmax):  3.999 s   4.239 s   GC (min … max): 0.00% … 0.00%
 Time  (median):     4.119 s                GC (median):    0.00%
 Time  (mean ± σ):   4.119 s ± 170.052 ms   GC (mean ± σ):  0.00% ± 0.00%

                               ▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁█ ▁
  4 s            Histogram: frequency by time         4.24 s <

 Memory estimate: 694.07 MiB, allocs estimate: 1008880.

MNE with .gif Note that due to some bugs in (probably) CondaPkg topoplot is blac and white.

@benchmark begin
    fig, anim = simulated_epochs.animate_topomap(
        times = Py(timestamps),
        frame_rate = framerate,
        blit = false,
        image_interp = "cubic", # same as CloughTocher
    )
    anim.save("topomap_animation_mne.gif", writer = "ffmpeg", fps = framerate)
end
BenchmarkTools.Trial: 1 sample with 1 evaluation per sample.
 Single result which took 8.731 s (0.00% GC) to evaluate,
 with a memory estimate of 4.18 KiB, over 158 allocations.


This page was generated using Literate.jl.