Speed measurement
Here we will compare the speed of plotting UnfoldMakie with MNE (Python) and EEGLAB (MATLAB).
Three cases are measured:
- Single topoplot
- Topoplot series with 50 topoplots
- Topoplott animation with 50 timestamps
Note that the results of benchmarking on your computer and on Github may differ.
using UnfoldMakie
using TopoPlots
using PyMNE
using PythonPlot
using BenchmarkTools
using Observables
using CairoMakie
Data input
dat, positions = TopoPlots.example_data()
df = UnfoldMakie.eeg_array_to_dataframe(dat[:, :, 1], string.(1:length(positions)));
Topoplots
UnfoldMakie.jl
@benchmark plot_topoplot(dat[:, 320, 1]; positions = positions)
BenchmarkTools.Trial: 127 samples with 1 evaluation.
Range (min … max): 35.070 ms … 342.629 ms ┊ GC (min … max): 0.00% … 88.62%
Time (median): 35.954 ms ┊ GC (median): 0.00%
Time (mean ± σ): 39.293 ms ± 27.339 ms ┊ GC (mean ± σ): 6.08% ± 7.86%
▁█▄
███▇▃▃▃▂▃▄▃▁▁▁▁▁▁▁▁▁▂▁▁▁▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▂▁▂ ▂
35.1 ms Histogram: frequency by time 60.3 ms <
Memory estimate: 9.22 MiB, allocs estimate: 134210.
UnfoldMakie.jl with DelaunayMesh
@benchmark plot_topoplot(
dat[:, 320, 1];
positions = positions,
topo_interpolation = (; interpolation = DelaunayMesh()),
)
BenchmarkTools.Trial: 134 samples with 1 evaluation.
Range (min … max): 35.645 ms … 72.701 ms ┊ GC (min … max): 0.00% … 0.00%
Time (median): 36.892 ms ┊ GC (median): 0.00%
Time (mean ± σ): 37.530 ms ± 3.602 ms ┊ GC (mean ± σ): 0.00% ± 0.00%
█▁▂ ▃
██████▇▆▅▇▆▃▃▄▄▃▁▁▁▁▁▃▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▃▁▁▁▁▁▁▁▁▁▁▃ ▃
35.6 ms Histogram: frequency by time 51.6 ms <
Memory estimate: 9.22 MiB, allocs estimate: 134217.
MNE
posmat = collect(reduce(hcat, [[p[1], p[2]] for p in positions])')
pypos = Py(posmat).to_numpy()
pydat = Py(dat[:, 320, 1])
@benchmark begin
f = PythonPlot.figure()
PyMNE.viz.plot_topomap(
pydat,
pypos,
sphere = 1.1,
extrapolate = "box",
cmap = "RdBu_r",
sensors = false,
contours = 6,
)
f.show()
end
BenchmarkTools.Trial: 252 samples with 1 evaluation.
Range (min … max): 13.847 ms … 536.151 ms ┊ GC (min … max): 0.00% … 0.00%
Time (median): 14.146 ms ┊ GC (median): 0.00%
Time (mean ± σ): 19.871 ms ± 49.661 ms ┊ GC (mean ± σ): 0.00% ± 0.00%
██▃▆▆
█████▇▄▁▆▄▆▄▁▁▄▁▁▁▁▁▄▁▁▁▄▁▁▆▁▆▁▁▁▁▁▁▁▁▁▁▄▁▁▁▄▁▁▁▁▁▁▁▁▁▁▁▁▁▁▄ ▆
13.8 ms Histogram: log(frequency) by time 24.3 ms <
Memory estimate: 4.27 KiB, allocs estimate: 134.
Topoplot series
Note that UnfoldMakie and MNE have different defaults for displaying topoplot series. UnfoldMakie in plot_topoplot
averages over time samples. MNE in plot_topopmap
displays single samples without averaging.
UnfoldMakie.jl
@benchmark begin
plot_topoplotseries(
df;
bin_num = 50,
positions = positions,
axis = (; xlabel = "Time windows [s]"),
)
end
BenchmarkTools.Trial: 3 samples with 1 evaluation.
Range (min … max): 1.877 s … 2.036 s ┊ GC (min … max): 0.00% … 0.00%
Time (median): 1.924 s ┊ GC (median): 0.00%
Time (mean ± σ): 1.946 s ± 81.456 ms ┊ GC (mean ± σ): 0.00% ± 0.00%
█ █ █
█▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁█▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁█ ▁
1.88 s Histogram: frequency by time 2.04 s <
Memory estimate: 414.11 MiB, allocs estimate: 5851615.
MNE
easycap_montage = PyMNE.channels.make_standard_montage("standard_1020")
ch_names = pyconvert(Vector{String}, easycap_montage.ch_names)[1:64]
info = PyMNE.create_info(PyList(ch_names), ch_types = "eeg", sfreq = 1)
info.set_montage(easycap_montage)
simulated_epochs = PyMNE.EvokedArray(Py(dat[:, :, 1]), info)
@benchmark simulated_epochs.plot_topomap(1:50)
BenchmarkTools.Trial: 5 samples with 1 evaluation.
Range (min … max): 813.506 ms … 2.025 s ┊ GC (min … max): 0.00% … 0.00%
Time (median): 821.387 ms ┊ GC (median): 0.00%
Time (mean ± σ): 1.061 s ± 538.959 ms ┊ GC (mean ± σ): 0.00% ± 0.00%
█
█▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▆ ▁
814 ms Histogram: frequency by time 2.03 s <
Memory estimate: 3.25 KiB, allocs estimate: 111.
MATLAB
Running MATLAB on a GitHub Action is not easy. So we benchmarked three consecutive executions (on a screenshot) on a server with an AMD EPYC 7452 32-core processor. Note that Github and the server we used for MATLAB benchmarking are two different computers, which can give different timing results.
![](../../../assets/MATLAB_benchmarking.png)
Animation
The main advantage of Julia is the speed with which the figures are updated.
timestamps = range(1, 50, step = 1)
framerate = 50
50
UnfoldMakie with .gif
@benchmark begin
f = Makie.Figure()
dat_obs = Observable(dat[:, 1, 1])
plot_topoplot!(f[1, 1], dat_obs, positions = positions)
record(f, "topoplot_animation_UM.gif", timestamps; framerate = framerate) do t
dat_obs[] = @view(dat[:, t, 1])
end
end
BenchmarkTools.Trial: 1 sample with 1 evaluation.
Single result which took 5.564 s (0.00% GC) to evaluate,
with a memory estimate of 1.66 GiB, over 17695024 allocations.
MNE with .gif
@benchmark begin
fig, anim = simulated_epochs.animate_topomap(
times = Py(timestamps),
frame_rate = framerate,
blit = false,
image_interp = "cubic", # same as CloughTocher
)
anim.save("topomap_animation_mne.gif", writer = "ffmpeg", fps = framerate)
end
BenchmarkTools.Trial: 1 sample with 1 evaluation.
Single result which took 8.987 s (0.00% GC) to evaluate,
with a memory estimate of 4.18 KiB, over 158 allocations.
This page was generated using Literate.jl.